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One problem by Tiberiu Popoviciu

The first circle of questions is connected with one problem, posed by the
eminent Romanian mathematician, Tiberiu Popoviciu (1906–1975), see [22].1

Let ABCD be any convex quadrilateral in the Euclidean plane. Let us consider
the points A1, B1, C1, and D1 of the segments AB, BC, CD, and DA
respectively, such that

|AA1|
|A1B| =

|BB1|
|B1C| =

|CC1|
|C1D| =

|DD1|
|D1A| = 1.

The straight lines AB1, BC1, CD1, DA1 form a quadrilateral KLMN
situated inside ABCD. Let us denote by S and s the areas of the
quadrilaterals ABCD and KLMN respectively. The problem consists in
proving the inequality

1

6
S ≤ s ≤ 1

5
S

and in the study of cases of equalities, see Fig. 1 a). Naturally, the question
arises as to where the quantities 1/6 and 1/5 come from in the formulation of
the above problem? They appeared thanks to special examples.

1T. Popoviciu, Problem 5897, Gazeta Matematică, 49 (1943), P. 322.
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a) b)

Fig. 1: a) The original Popoviciu’s problem; b) An example for the
Popoviciu’s problem with S = 5s.

We have S = 5s in the case when ABSD is a parallelogram (a rectangle or a
square in particular), see Fig. 1 b). The equality S = 6s we obtain if two
adjacent vertices of ABCD are coincide. In particular, if C = B, then
B1 = L = M = C = B and K = A1, see Fig. 2 a).
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a) b)

Fig. 2: a) An example for the Popoviciu’s problem with S = 6s;
b) The generalized Popoviciu’s problem.
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The solution of this problem was obtained by Yu.G. Nikonorov in [17],2 whereas
Yu.G. Nikonorov and Yu.V. Nikonorova solved some natural generalization of
the Popoviciu’s problem in [19].3 Later the same results were obtained by
R. Mabry in [13]4 (the original Popoviciu’s problem) and by J.M. Ash,
M.A. Ash, and P.F. Ash in [1]5 (the generalized Popoviciu’s problem).

We will consider the solution of the generalized Popoviciu’s problem and
discuss tools that could be applied in the studying of similar problems.

2Yu.G. Nikonorov, Some problems of Euclidean geometry, Preprint, Rubtsovsk Industrial
Institute, Rubtsovsk, 1998, 32 p.

3Yu.G. Nikonorov, Yu.V. Nikonorova, Generalized Popoviciu’s problem, Tr. Rubtsovsk. Ind.
Inst., 7 (2000), 229–232 (in Russian) (2000), Zbl. 0958.51021. English translation:
arXiv:1806.03345.

4R. Mabry. Crosscut convex quadrilaterals, Math. Mag., 84(1) (2011), 16–25,
Zbl.1227.51015, MR2793173.

5J.M. Ash, M.A. Ash, P.F. Ash, Constructing a quadrilateral inside another one, The
Mathematical Gazette, 93(528), (2009) 522–532, see also arXiv:0704.2716.
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Now, let us consider the generalized Popoviciu’s problem. Let ABCD be any
convex quadrilateral in the Euclidean plane. Let us consider the points A1, B1,
C1, and D1 of the segments AB, BC, CD, and DA respectively, such that

|AA1|
|A1B| =

|BB1|
|B1C| =

|CC1|
|C1D| =

|DD1|
|D1A| = k

for some fixed k > 0. The straight lines AB1, BC1, CD1, DA1 form a
quadrilateral KLMN (K, L, M , N are the intersection points for the first and
the fourth, the first and the second, the second and the third, the third and the
fourth straight lines respectively), situated inside ABCD, see Fig. 2 b).
Let us denote by S and s the areas of the quadrilaterals ABCD and KLMN
respectively. The generalized Popoviciu’s problem consists in finding exact
upper and lower bounds for the ratio s/S for any given k > 0.
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Theorem ([19])

For an arbitrary convex quadrilateral in the Euclidean plane and for any k > 0,
the inequality

1

(k + 1)(k2 + k + 1)
· S ≤ s ≤ 1

2k2 + 2k + 1
· S

holds. Moreover, if S > 0 then the equality (k + 1)(k2 + k + 1) s = S is
fulfilled exactly for quadrilaterals with two coinciding vertices, whereas the set
of quadrilaterals with the property (2k2 + 2k + 1) s = S contains all
parallelograms, but not only them.
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We may assume that the vertices A, B, and D are pairwise distinct points.
Using a suitable affine transformation (the ratio of the areas does not change in
this case), one can reduce the problem to the case, when ∠BAD of the
quadrilateral ABCD is right, and the sides AB and AD have unit length.
We introduce a Cartesian coordinate system in the plane, taking the point A as
the origin and the rays AD and AB as the coordinate rays. In this coordinate
system, the points A, B, D, C have coordinates (0, 0), (0, 1), (1, 0), (a, b)
respectively, where a ≥ 0, b ≥ 0, a + b ≥ 1. Let us consider the set

Ω := {(a, b) ∈ R
2 | a ≥ 0, b ≥ 0, a + b ≥ 1} .
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The values s and S can be calculated using standard analytical geometry tools.
It is easy to get that 2S = a + b. It is a simple problem to calculate the
coordinates of the following points:

A1 =

„

0,
k

k + 1

«

, B1 =

„

ak

k + 1
,
1 + kb

k + 1

«

,

C1 =

„

a + k

k + 1
,

b

k + 1

«

, D1 =

„

1

k + 1
, 0

«

.

It is easy also to find the equations of the straight lines DA1, CD1, AB1, and
BC1:

kx + (k + 1)y − k = 0,

(k + 1)bx + (1 − a(k + 1))y − b = 0,

(kb + 1)x − kay = 0,

(k + 1 − b)x + (a + k)y − (a + k) = 0.
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Now, we should calculate the coordinates of the points K, L, M , and N ,
which are intersection points of pairs of the corresponding straight lines.
Omitting the standard calculations, we obtain

K =

„

ak2

ak2 + bk2 + bk + k + 1
,

k(bk + 1)

ak2 + bk2 + bk + k + 1

«

,

L =

„

ak(a + k)

ak2 + bk2 + ak + k + a
,

(bk + 1)(a + k)

ak2 + bk2 + ak + k + a

«

,

M =

„

ak2 + a2k + ak + bk − k + a2 + ab − a

ak2 + bk2 + 2ak + bk − k + a + b − 1
,

b (k2 + ak + a + b − 1)

ak2 + bk2 + 2ak + bk − k + a + b − 1

«

,

N =

„

ak2 + ak + bk − k + b

ak2 + bk2 + ak + 2bk − k + b
,

bk2

ak2 + bk2 + ak + 2bk − k + b

«

.

It is obvious that

2s = 2S∆ANM + 2S∆AML − 2S∆ANK .
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Using determinants for calculating the areas of the triangles, we obtain

2S∆AML =

(a + k) ·
ak2

− bk2
− k + ak2b + ak + a2k + b2k2 + bk − a + ab + a2

(−k + ak2 + 2ak − 1 + a + b + bk2 + bk) (ak2 + ak + a + bk2 + k)
,

2S∆ANM =

b ·
ak2b + k − b − 2bk + ab − 2ak − ak2 + bk2 + b2k + a2k + b2 + 3bka + a2k2

(bk2 + 2bk + b − k + ak2 + ak) (−k + ak2 + 2ak − 1 + a + b + bk2 + bk)
,

2S∆ANK =

k ·

b2k2 + b2k − bk2 + ak2b + bk + b − k + ak2 + ak

(bk2 + bk + k + 1 + ak2) (bk2 + 2bk + b − k + ak2 + ak)
.

Therefore,
s

S
=

P (a, b)

Q(a, b)
,

where
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P (a, b) = −2a2k2b + 6ab4k3 − 4ak2b + 12a2k3b2 + 9ab4k5

+16a2k4b2 + 19a2k4b3 + 9a2b3k2 + 8a3k2b2 + 17a3k3b2 + 2a2k6b

+2a4k6b + 8a3k5b − b2a − 3b2k2 + a2k + bk2 + ak2 − 8ab3k5 + 9a4k4b

+2b3ak − 4a2k5b + 6a3kb + 3b4k3 − 5a2kb + 3ab4k2 + 14a3k5b2

+18a2k5b3 − 4a2k5b2 + 6a3k6b2 + 15a2k3b3 + 11ab4k4 + ab2k2 − 9ak3b2

+12a3k4b + 4ab3k4 + 8a3k2b + a4k3 + 3a4k2 − 4a2k6b2 − 3a3k2 + 8a4k3b

+a3k3 − 2a2k3 − 5a3k4 + 6a2k6b3 + 2b2k3 − a2b − 2a3k + 2ab4k6

+17a3k4b2 + 5a4k5b + a4k4 + a5k5 + 4a3k3b + 12ab3k3 + 4ab3k2

+7a2k2b2 − 2b2ka + 7a2b2k + 8ak4b + 8ak5b2 − 5b3k3 + b3k4 + 4b3k5

−2bk4 + 2b2k4 + 6a2k4 − 4b2k5 − 2ak4 + 4a2k5 + a4k + 2a2b2 + a3b

+2ak6b2 − 11ak4b2 − 3a2k3b − 17a2k4b − b2k + 2a4k6 + 4a4k5 − 8a3k5

+2a5k4 + 2b4k6 − b4k4 − a2k2 + a5k3 + a3b2k − 2a3k6 + 2a2b3k

−2b3k6 + 2a4k2b + b4ak + b3a + b5k3 + 2b4k2 + b3k + 2b5k4 + b5k5,
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Q(a, b) = (a + b)
`

ak2 + ak + a + bk2 + k
´

×
`

−k + ak2 + 2ak − 1 + a + b + bk2 + bk
´

×
`

bk2 + bk + k + 1 + ak2
´ `

bk2 + 2bk + b − k + ak2 + ak
´

.

It should be noted that

−k + ak2 + 2ak − 1 + a + b + bk2 + bk

= (a + b − 1) + k(a + b − 1) + ak + k2(a + b) > 0,

bk2 + 2bk + b − k + ak2 + ak = k(a + b − 1) + bk + b + k2(a + b) > 0

on the set Ω. This implies that Q(a, b) > 0 on the set Ω.

Therefore, the proof of the theorem reduces to the proof of the following two
inequalities for (a, b) ∈ Ω:

1) (k + 1)(k2 + k + 1)P (a, b) − Q(a, b) ≥ 0,

2) Q(a, b) − (2k2 + 2k + 1)P (a, b) ≥ 0,

and the study of the equality cases.
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Let us consider the first inequality. Direct calculations show that

(k + 1)(k2 + k + 1)P (a, b) − Q(a, b) = k3 (a + b)
`

1 + 2k + 2k2
´

×
`

ak2b + ak2 + 2ak + a + b − 1 − k + b2k − bk2 + b2k2
´

×
`

a2k2 + a2k + ba − 2ak + k + 2bak − ak2 + ak2b + bk2
´

.

Note that

ak2b + ak2 + 2ak + a + b − 1 − k + b2k − bk2 + b2k2

= (a + b − 1)(k2b + 1) + ak2 + (2a + b2 − 1)k,

a2k2 + a2k + ba − 2ak + k + 2bak − ak2 + ak2b + bk2

= ak2(a + b − 1) + ab + bk2 + (a2 + 2ab − 2a + 1)k.

We note that the inequality a + b ≥ 1 is fulfilled on the set Ω. Thus, to prove
the first part of the theorem it suffices to make sure that the inequalities
2a + b2 − 1 ≥ 0 and a2 + 2ab − 2a + 1 ≥ 0 are fulfilled on the set Ω.
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Let us prove the first inequality. We know that b2 + 1 ≥ 2b (b2 + 1 = 2b if and
only if b = 1), hence,

2a + b2 − 1 ≥ 2a + (2b − 1) − 1 = 2(a + b − 1) ≥ 0.

It is easy to see that 2a + b2 − 1 = 0 for (a, b) ∈ Ω if and only if
(a, b) = (0, 1). Note also that

(a + b − 1)(k2b + 1) + ak2 + (2a + b2 − 1)k = 0

for (a, b) = (0, 1).
Let us prove the second inequality. Obviously, the inequality
a2 + 2ab − 2a + 1 = (a − 1)2 + 2ab ≥ 0 is fulfilled on the set Ω, and the
equality is achieved only when (a, b) = (1, 0). Note that

ak2(a + b − 1) + ab + bk2 + (a2 + 2ab − 2a + 1)k = 0

for (a, b) = (1, 0).
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Finally, we get that

(k + 1)(k2 + k + 1)P (a, b) − Q(a, b) ≥ 0

on the set Ω, and the equality is achieved only when (a, b) = (1, 0) or
(a, b) = (0, 1), that is, in the case when two vertices of the quadrilateral are
coincided.
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The proof of the second part of the theorem is much simpler. By direct
calculations we obtain that

Q(a, b) − (2k2 + 2k + 1)P (a, b)

= k4 (a + b) (bk + 1 − a − ak)2 (b + bk − 1 + ak − 2k)2 .

We note that the equality holds on the straight lines

bk + 1 − a − ak = 0, b + bk − 1 + ak − 2k = 0,

the point (1, 1) satisfies both these equations and corresponds to the case
when the quadrilateral ABCD is a parallelogram. Thus, the above theorem is
completely proved.
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It should be noted that in the papers [5]6 and [10], 7 the authors studied the
corresponding analogue of the Popoviciu’s problem for pentagons on the
Euclidean plane.

Fig. 3: The Popoviciu’s problems for pentagons.

6F.A. Dudkin, Popoviciu’s problem for a convex pentagon, Tr. Rubtsovsk. Ind. Inst., 12
(2003), 31–38 (in Russian), Zbl.1036.52002.

7K.O. Kizbikenov, Popoviciu’s problem for a convex pentagon, Vestnik Altaiskogo
Gosudarstvennogo Pedagogiceskogo Universiteta, 20 (2014), 16–23 (in Russian).
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Let ABCDE be any convex quadrilateral in the Euclidean plane. Let us
consider the points A1, B1, C1, D1, and E1 of the segments AB, BC, CD,
DE, and EA respectively, such that

|AA1|
|A1B| =

|BB1|
|B1C| =

|CC1|
|C1D| =

|DD1|
|D1E| =

|EE1|
|E1A| = 1.

The straight lines AB1, BC1, CD1, DE1, EA1 form a pentagon FGHIJ
situated inside ABCDE. Let us denote by S and s the areas of the
quadrilaterals ABCDE and FGHIJ respectively. The problem consists in the
following: to find the best possible constants C1 and C2 such that

C1 · S ≤ s ≤ C2 · S

and to study all cases of equalities, see Fig. 3.
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Theorem (Dudkin – Kizbikenov, [5, 10])

For an arbitrary convex pentagon in the Euclidean plane, the inequality

1

6
· S ≤ s <

51

100
· S

holds. Moreover, if S > 0 then the equality 6 s = S is fulfilled exactly for
pentagons with three coinciding vertices.

Hence, we see that C1 = 1/6. The inequality 1

6
· S ≤ s was proved by

F. Dudkin, while he obtained a weaker result for the upper bound: s < 13

25
· S.

The inequality s < 51

100
· S was obtained by K. Kizbikenov. Unfortunately, we

do not yet know the exact value of the constant C2. There are pentagons such
that s > 127

259
· S. It is possible that C2 = 1/2.

A similar problem can be considered for a convex n-gon ABCDEF..., n ≥ 6,
It should only be noted that the upper estimate becomes trivial, since in the
case of degeneration into a triangle A = B, C = D, and E = F = . . . , the
equality s = S holds (both polygons degenerate into the same triangle).
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25
· S.

The inequality s < 51

100
· S was obtained by K. Kizbikenov. Unfortunately, we

do not yet know the exact value of the constant C2. There are pentagons such
that s > 127

259
· S. It is possible that C2 = 1/2.

A similar problem can be considered for a convex n-gon ABCDEF..., n ≥ 6,
It should only be noted that the upper estimate becomes trivial, since in the
case of degeneration into a triangle A = B, C = D, and E = F = . . . , the
equality s = S holds (both polygons degenerate into the same triangle).
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The self Chebyshev radius of the boundary of a convex figure and related
extremal problems

For a given metric space (X, d), we denote by B(x, r) the closed ball with
center x and radius r. Given a nonempty bounded subset M of X and a
nonempty set Y ⊂ X, the relative Chebyshev radius (of the set M with respect
to Y ) is defined by

rY (M) := inf
x∈Y

r(x, M),

where
r(x, M) := inf{r ≥ 0 |M ⊂ B(x, r)} = sup

y∈M

d(x, y).

In the case Y = M , we get the definition of the relative Chebyshev radius of M
with respect to M itself or the self Chebyshev radius of the set M :

rM (M) = inf
x∈M

sup
y∈M

d(x, y).
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Fig. 4: The self Chebyshev radius for some convex figures and their
boundaries.

For brevity we will denote by δ(M) the self Chebyshev radius rM (M) of M . It
is clear that this value depends only on the set M and the restriction of the
metric d to this set, hence it is an intrinsic characteristic of the (bounded)
metric space (M, d|M×M ). It has also the following obvious geometric sense for
compact M : δ(M) is the smallest radius of a ball having its center in M and
covering M .
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The study of extremal problems for close convex curves in the Euclidean plane
with a given self Chebyshev radius started with the paper [28]8 by Rolf Walter
(2017). In particular, he conjectured that L(Γ) ≥ π · δ(Γ) for any closed
convex curve Γ in the Euclidean plane, where L(Γ) is the length of Γ and d is
the standard restricted Euclidean metric. In [28], this conjecture is proved for
the case that Γ is a convex curve of class C2 and all curvature centers of Γ lie
in the interior of Γ. It is also shown that the equality L(Γ) = π · δ(Γ) in this
case holds if and only if γ is of constant width.

8R. Walter, On a minimax problem for ovals, Minimax Theory Appl. 2(2) (2017), 285–318.
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As the authors of [2] discovered somewhat later, the original problem from [28],
which was to prove the inequality L(Γ) ≥ π · δ(Γ) for any closed convex curve
Γ in the Euclidean plane, had already been solved many years ago in paper [6]
by K.J. Falconer (the results of that paper were formulated in other terms,
without using the self Chebyshev radius). An exposition of the corresponding
result can also be found in [14, Theorem 4.3.2]. It should be noted that a
stronger result is also proved in [6]9:

Theorem (Falconer)

Let Γ be a closed rectifiable curve in R
n (with the Euclidean metric) such that

for every point x on Γ there is a point of Γ at distance at least 1 from x. Then
Γ has length at least π, this value being attained if and only if Γ bounds a
plane convex set of constant width 1.

9K.J. Falconer, A characterisation of plane curves of constant width, J. Lond. Math. Soc.,
II. Ser. 16 (1977), 536–538.
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It is also proved in [28] that all C2-smooth convex curves have good
approximations by polygonal chains in the sense of the self Chebyshev radius.
This observation leads to natural extremal problems for convex polygons. In
particular, the following result given in [28] holds:

Theorem (Walter)

For each triangle P in the Euclidean plane, one has L(Γ) ≥ 2
√

3 · δ(Γ) with
equality exactly for equilateral triangles, where Γ is the boundary of P .

The proof of this result was simplified in the paper [2]10 by V. Balestro,
H. Martini, Yu.G. Nikonorov, and Yu.V. Nikonorova, where the authors
determined (in particular) the self Chebyshev radius for the boundary of an
arbitrary triangle.

10V. Balestro, H. Martini, Yu.G. Nikonorov, Yu.V. Nikonorova, Extremal problems for convex
curves with a given self Chebyshev radius, Results in Mathematics, 76(2) (2021), Paper No.
87, 13 pp.
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Theorem ([2])

Let P be a triangle in the Euclidean plane with side lengths a ≥ b ≥ c and with
angles α ≥ β ≥ γ, Γ be the boundary of P . Then the following formula holds:

δ(Γ) =

8

>

>

>

>

<

>

>

>

>

:

a

2
for α ≥ π/2,

b sin(γ) for γ ≥ π/4,

b

2 cos(γ)
for γ ≤ π/4 and α ≤ π/2 .

Moreover, some related problems were considered in detail in [2]. In particular,
the maximal possible perimeter for convex curves and boundaries of convex
n-gons with a given self Chebyshev radius were found.
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A half-disk in the Euclidean plane R
2 is a set which is isometric to

HD(r) =
˘

(x, y) ∈ R
2 | y ≥ 0, x2 + y2 ≤ r2

¯

for some fixed r > 0. The boundary of HD(r) is the union of a half-circle of
radius r and a line segment of length 2r. Recall that L(Γ) means the length of
a given convex curve Γ.

Lemma ([2])

Let Γ be the boundary of some half-disk of radius r in R
2. Then δ(Γ) = r and

L(Γ) = (2 + π) · δ(Γ).
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Fig. 5: The estimation from the above for the length of Γ with a
given δ(Γ).

Theorem ([2])

For any closed convex curve Γ in the Euclidean plane, one has

L(Γ) ≤ (2 + π) · δ(Γ),

with equality exactly for boundaries of half-disks.
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Now we are going to describe all convex n-gons P (n ≥ 2) of maximal
perimeter among all convex n-gons with the same value of r = δ(Γ), where Γ
is the boundary of P . For any convex polygon P we denote by bd(P ) its
boundary. At first, we consider an explicit construction of a special family of
convex n-gons Un for n ≥ 2.

Let us consider a regular 2(n − 1)-gon Pn, inscribed in a circle of radius r > 0.
Take points A, B ∈ Pn that are opposite vertices of this polygon (i. e.,
d(A, B) = 2r). Now, consider one of the two half-planes determined by the
straight line AB, say H, and consider the union Un of the line segment [A, B]
with the polygonal line Pn ∩ H. This is an n-gon inscribed in the boundary of
the half-disk {x ∈ R

2 | d(x, o) ≤ r} ∩ H, where o is the midpoint of the line
segment [A, B]. It is easy to check that δ(Un) = r. For n = 2 we see that
P2 = U2 is a line segment of length 2r.

Fig. 6: The polygons Un for n = 3, n = 4, and n = 6.
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The perimeter L(bd(Un)) of Un is equal to λn · r, where

λn = 2

„

1 + (n − 1) sin

„

π

2(n − 1)

««

for n ≥ 2. Note that λ2 = 4, since L(bd(U2)) is the double length of the line

segment U2. It is also easy to see that λ3 = 2(1 +
√

2), λ4 = 5, and
λn → 2 + π as n → ∞.

Theorem ([2])

For any convex n-gon P ⊂ R
2 with the boundary Γ, n ≥ 2, one has

L(Γ) ≤ 2

„

1 + (n − 1) sin

„

π

2(n − 1)

««

· δ(Γ),

with equality exactly for the n-gon Un defined above.

It is interesting also to find all n-gons with the smallest perimeter among all
convex n-gon which boundaries have a given value of the self Chebyshev radius
(we call such polygons extremal), i. e. L(Γ)/δ(Γ) has a minimal possible value,
where Γ = bd(P ).
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Rolf Walter’s conjecture on “magic kites” and related problems

Let us recall that n-gon P is extremal if it has the smallest perimeter among all
convex n-gon which boundaries have a given value of the self Chebyshev radius
(i. e. L(Γ)/δ(Γ) has a minimal possible value, where Γ = bd(P )).
Extremal triangles are exactly regular triangles, as it was proved by R. Walter
in [28]11. In the same paper [28], Rolf Walter conjectured that

L(Γ) ≥ 4

3

q

2
√

3 + 3 · δ(Γ)

for any convex quadrangle P ⊂ R
2 with the boundary bd(P ) = Γ. Note that

2 +
√

2 > 4

3

p

2
√

3 + 3 = 3.389946....
Note that this inequality becomes an equality for quadrangles P called “magic
kites”. This definition is taken from [28] and means convex quadrangles which
are hypothetically extreme with respect to the self Chebyshev radius.

11R. Walter, On a minimax problem for ovals, Minimax Theory Appl. 2(2) (2017), 285–318.
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Fig. 7: A magic kite.

Up to similarity, such a quadrangle ABCD could be represented by its vertices,
that are as follows (see Fig. 7):

A =

„

0,

√
3

3

q

2
√

3 + 3

«

, B = (1, 0), C =

„

0,−1

3

q

2
√

3 − 3

«

, D = (−1, 0).
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The points H1, H2, H3, H4 are self Chebyshev centers for the boundary
Γ = bd(ABCD) of the quadrangle ABCD and
δ(bd(ABCD)) = d(H2, A) = d(H1, C) = d(H3, B) = d(H4, B) is the self
Chebyshev radius of its boundary.

The above conjecture by Rolf Walter was confirmed by E.V. Nikitenko and
Yu.G. Nikonorov in [16].12

Now, we are going to discuss how it is possible to determine all extremal
quadrilaterals (4-gons) according to [16].

Let us consider the main steps to prove L(Γ) ≥ 4

3

p

2
√

3 + 3 · δ(Γ) for any
extremal quadrilateral P . For this goal, we consider some auxiliary problems.
We consider a convex quadrangle P = A1A2A3A4 (indices are from Z4) that is
extremal, Γ := bd(P ), δ(Γ) is the self Chebyshev radius of Γ. We denote by
Gmin the set of all point x ∈ Γ such that Γ is a subset of the disc with center x
and radius δ(Γ) (i. e. x is a self Chebyshev center of Γ). For any x ∈ Gmin we
consider the set F (x) = {y ∈ Γ | d(x, y) = δ(Γ)}.

12E.V. Nikitenko, Yu.G. Nikonorov, The extreme polygons for the self Chebyshev radius of
the boundary, Preprint, 2022, arXiv:2301.03218.

Yurii Nikonorov Some extremal problems on the plane



Lecture 1. One problem by Tiberiu Popoviciu
Lecture 2. The self Chebyshev radius of the boundary . . .
Lecture 3. Rolf Walter’s conjecture on “magic kites”. . .
Lecture 4. The self-perimeter of the unit ball of the Minkowski . . .

The points H1, H2, H3, H4 are self Chebyshev centers for the boundary
Γ = bd(ABCD) of the quadrangle ABCD and
δ(bd(ABCD)) = d(H2, A) = d(H1, C) = d(H3, B) = d(H4, B) is the self
Chebyshev radius of its boundary.

The above conjecture by Rolf Walter was confirmed by E.V. Nikitenko and
Yu.G. Nikonorov in [16].12

Now, we are going to discuss how it is possible to determine all extremal
quadrilaterals (4-gons) according to [16].

Let us consider the main steps to prove L(Γ) ≥ 4

3

p

2
√

3 + 3 · δ(Γ) for any
extremal quadrilateral P . For this goal, we consider some auxiliary problems.
We consider a convex quadrangle P = A1A2A3A4 (indices are from Z4) that is
extremal, Γ := bd(P ), δ(Γ) is the self Chebyshev radius of Γ. We denote by
Gmin the set of all point x ∈ Γ such that Γ is a subset of the disc with center x
and radius δ(Γ) (i. e. x is a self Chebyshev center of Γ). For any x ∈ Gmin we
consider the set F (x) = {y ∈ Γ | d(x, y) = δ(Γ)}.

12E.V. Nikitenko, Yu.G. Nikonorov, The extreme polygons for the self Chebyshev radius of
the boundary, Preprint, 2022, arXiv:2301.03218.

Yurii Nikonorov Some extremal problems on the plane



Lecture 1. One problem by Tiberiu Popoviciu
Lecture 2. The self Chebyshev radius of the boundary . . .
Lecture 3. Rolf Walter’s conjecture on “magic kites”. . .
Lecture 4. The self-perimeter of the unit ball of the Minkowski . . .

The points H1, H2, H3, H4 are self Chebyshev centers for the boundary
Γ = bd(ABCD) of the quadrangle ABCD and
δ(bd(ABCD)) = d(H2, A) = d(H1, C) = d(H3, B) = d(H4, B) is the self
Chebyshev radius of its boundary.

The above conjecture by Rolf Walter was confirmed by E.V. Nikitenko and
Yu.G. Nikonorov in [16].12

Now, we are going to discuss how it is possible to determine all extremal
quadrilaterals (4-gons) according to [16].

Let us consider the main steps to prove L(Γ) ≥ 4

3

p

2
√

3 + 3 · δ(Γ) for any
extremal quadrilateral P . For this goal, we consider some auxiliary problems.
We consider a convex quadrangle P = A1A2A3A4 (indices are from Z4) that is
extremal, Γ := bd(P ), δ(Γ) is the self Chebyshev radius of Γ. We denote by
Gmin the set of all point x ∈ Γ such that Γ is a subset of the disc with center x
and radius δ(Γ) (i. e. x is a self Chebyshev center of Γ). For any x ∈ Gmin we
consider the set F (x) = {y ∈ Γ | d(x, y) = δ(Γ)}.

12E.V. Nikitenko, Yu.G. Nikonorov, The extreme polygons for the self Chebyshev radius of
the boundary, Preprint, 2022, arXiv:2301.03218.

Yurii Nikonorov Some extremal problems on the plane



Lecture 1. One problem by Tiberiu Popoviciu
Lecture 2. The self Chebyshev radius of the boundary . . .
Lecture 3. Rolf Walter’s conjecture on “magic kites”. . .
Lecture 4. The self-perimeter of the unit ball of the Minkowski . . .

Proposition

Suppose that a quadrilateral P is extremal. If A ∈ Gmin and A ∈ [Ai, Ai+1],
then Ai, Ai+1 6∈ F (A). In particular, F (A) ⊂ {Ai+2, Ai+3}.

Let us denote by NE the quantity of points in the set Gmin, or, in other words,
the quantity of self Chebyshev centers for Γ. For any i ∈ Z4, the set
Gmin ∩ [Ai, Ai+1] is either empty or has exactly one point. On the other hand,
Gmin 6= ∅ and, therefore, 1 ≤ NE ≤ 4. It is easy to prove that Gmin does not
contain any vertex of P . It is natural to consider all possible values of NE and
consider separately every case with the cardinality k, k = 1, 2, 3, 4, for the set
Gmin. We will denote every such case as Case k.
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a) b) c)

Fig. 8: a) Case 2.1, b) Case 2.2, c) Case 2.3.

Yurii Nikonorov Some extremal problems on the plane



Lecture 1. One problem by Tiberiu Popoviciu
Lecture 2. The self Chebyshev radius of the boundary . . .
Lecture 3. Rolf Walter’s conjecture on “magic kites”. . .
Lecture 4. The self-perimeter of the unit ball of the Minkowski . . .

d) e)

Fig. 9: d) Case 3.1, e) Case 3.2.
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f) g)

Fig. 10: f) Case 3.3, g) Case 3.4.

In [16] (this paper has 40 pages), all cases were considered in detail. In Fig. 8,
Fig. 9, and Fig. 10, all the essential subcases of Cases 2 and 3 are shown.
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In the final part of [16], the authors considered some results of numerical
calculations. The search for possible extremal polygons for small values of n
was undertaken by E.V. Nikitenko. His experiments led to the conjecture that
for odd n, any extremal polygon is a regular n-gon (this is the case for n = 3).
On the other hand, for even values of n, regular n-gons are not extremal in the
above sense.

The type of an extremal polygon (quite possibly) depends on the power of the
number 2 with which it enters to n as a multiplier. See Fig. 11 for hypothetical
extreme polygons for n = 6 and n = 10. The calculation of the characteristics
of these polygons (in particular, these polygons are equilateral), as well as
numerous computer experiments, lead to the following conjectures:
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a) b)

Fig. 11: Extreme n-gon candidates for: a) n = 6; b) n = 10. In
both cases, the green and red polygons are regular, and are
negative homothets of each other.
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Conjecture

For any convex 6-gon P in the Euclidean plane, one has

L(Γ) ≥ 12
“

2 −
√

3
”

· δ(Γ),

where Γ is the boundary of P .

Conjecture

For any convex 10-gon P in the Euclidean plane, one has

L(Γ) ≥ 20

„

1 +
√

5 −
q

5 + 2
√

5

«

· δ(Γ),

where Γ is the boundary of P .
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Now, we consider several extremal problems on the Euclidean plane, the
interest in which is due, among other things, to the study of the properties of
the self Chebyshev radii of the boundaries of convex polygons.

A side AB of a convex polygon P is said to have an l-strut if there exists a
point C ∈ P such that such that d(A, C) = d(B, C) = l. It should be noted
that C should not be a vertex of P in this definition. For l = 1 we will use the
term strut instead of 1-strut.
A convex polygon P in Euclidean plane is said to have the ∆(l) property if
every its side has an l-strut (i. e. for the endpoints A and B of every side of P ,
there is a point C ∈ P such that d(A, C) = d(B, C) = l). Let us recall
Problem 1 from [2].13

Problem ([2])

Given a real number l > 0 and a natural number n ≥ 3, determine the best
possible constant C(n, l) such that the inequality L(P ) ≥ C(n, l) holds for the
perimeter L(P ) of every convex polygon P with n vertices that satisfies the
∆(l) property.

13V. Balestro, H. Martini, Yu.G. Nikonorov, Yu.V. Nikonorova, Extremal problems for convex
curves with a given self Chebyshev radius, Results in Mathematics, 76(2) (2021), Paper No.
87, 13 pp.
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a) b)

Fig. 12: a) A triangle with the ∆ property; b) A “narrow” isosceles
triangle with the ∆ property.

It is easy to show that C(3, l) = 3l. The solution of the above problem for
n ≥ 4 was obtained recently in the paper [18]14 by Yu.G. Nikonorov and
O.Yu. Nikonorova. It is clear, using similarities in the Euclidean plane, we may
restrict our attention to the case l = 1. In what follows, we consider only the
case l = 1 and, for brevity, we will call the ∆(1) property the ∆ property.

14Yu.G. Nikonorov, O.Yu. Nikonorova, Some extremal problems for polygons in the
Euclidean plane, Preprint, 2022, arXiv:2209.05940.
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One of the main results of [18] is as follows.

Theorem ([18])

Given a natural number n ≥ 3, the perimeter L(P ) of any polygon P with n
vertices, that satisfies the ∆ property, is such that L(P ) ≥ 3. Moreover, this
inequality cannot be improved, while the equality L(P ) = 3 holds if and only if
P is a regular triangle with unit side.

A regular triangle with unit side satisfies the ∆ property and has perimeter 3
(the smallest possible). It should be noted that a triangle ABC with the ∆
property should not contain a regular triangle with unit side. To show this let
us consider a “narrow” isosceles triangle ABC such that ∠ACB = α,
|BA| = |CA| = 2 cos α. It is easy to see that this triangle satisfies the ∆
property if α ≤ π/3, see Fig. 12 b). On the other hand, such triangle does not
contain a regular triangle with unit side for sufficiently small α > 0.
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Fig. 13: An n-gon with the ∆ property for n ≥ 4.

Let us show that for any given n ≥ 4, there are n-gons P with the ∆ property
such that the perimeter L(P ) is arbitrarily close to 3. We construct such
polygons in a small neighborhood (with respect to the Hausdorff metric) of a
regular triangle with unit side. Let us fix a small number ε > 0. We start from
the regular triangle A1A2A3 with side length 1 + ε.
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Further, we fix a number α > 0 such that α < min {π/n, ε} and consider the
points A4, A5, . . . , An−1, An in the plane such that |A1Ai| = 1 + ε and
∠Ai−1A1Ai = α, i = 4, 5 . . . , n. Let P be the convex hull of the points Ai,
i = 1, 2, . . . , n, see Fig. 13. For any side AiAi+1 of P with i = 1, 2, . . . , n − 1
we can easily choose a point B ∈ P such that |AiB| = |Ai+1B| = 1. The
same is true for the side A1An for sufficiently small α > 0, i. e., the polygon P
has the ∆ property for sufficiently small α > 0. For the perimeter of P we have
the following estimate:

L(P ) = |A1An| + |A1A2| + |A2A3| +
n−1
X

i=3

|AiAi+1| = 3 + (n − 3)|A3A4|

= (1 + ε) ·
`

3 + 2(n − 3) sin(α/2)
´

< (1 + ε) ·
`

3 + (n − 3)α)
´

.

Now, it is clear that for sufficiently small ε > 0 and α > 0, L(P ) is as close
to 3 as we want.
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If X and Y are sets in R
2, then X + Y = {x + y |x ∈ X, y ∈ Y } denotes the

Minkowski sum of X and Y . For given t ∈ R and X ⊂ R
2, we consider

tX := {t · x |x ∈ X}. In what follows, we will often use −X = {−x |x ∈ X}.
We will need a special transformation of convex polygons in R

2. For a convex
polygon P , we define the difference body by the formula

D(P ) = P + (−P ).

Note that the central symmetral of P , defined by

♦(P ) =
1

2
P +

1

2
(−P ),

differs from the difference body D(P ) only by a dilatation factor of 1/2, see
e. g. [3]. It should be noted that the central symmetral have many important
properties. For instance, it is easy to check that the perimeters of the polygons
P and ♦(P ) coincide (hence, the perimeter of D(P ) is in two times greater).
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Fig. 14: A triangle P and the central symmetral ♦(P ) of P

It is clear that the difference body D(P ) = P + (−P ) of any convex polygon P
is a centrally symmetric polygon. In particular, the origin O is the center of
D(P ). It is remarkable that the difference body of a polygon P with the ∆
property also has one special property.
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We will say that an origin-symmetric (i. e. centrally symmetric with the
origin O as the center) polygon P has the ∆s property if for any its side AB,

P contains a rectangle KLMN such that
−−→
KL =

−−→
NM =

−→
AB and the distance

from O to any vertex of KLMN is 1. The following results are very important.

Proposition

Let P be a polygon with the ∆ property. Then its difference body
D(P ) = P + (−P ) has the ∆s property. Moreover, the perimeter L

`

D(P )
´

is
equal to 2 · L(P ).

Proposition

Let P be an origin-symmetric convex polygon with the ∆s property and such
that any side of it is not longer than 1. Then the perimeter L(P ) is not less
than 6. Moreover, L(P ) = 6 if and only if P is a regular hexagon with side of
length 1.

In fact, by passing to a difference body, the proof of the desired result was
reduced to verifying a much simpler statement for an origin-symmetric polygon.
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It is reasonable to try to weaken the conditions of the previous theorem. The
most natural variant is to prescribe the presence of struts not on all sides of the
polygon, but only on some of them.

The presence of a strut for only one side of the polygon P , is not enough for
the inequality L(P ) ≥ 3. Indeed, we can consider triangles ABC with
|AC| = |BC| = 1 and with very short AB. In this case the side AB has a
strut, but L(P ) can be smaller than 2 + ε for any given ǫ > 0. On the other
hand, if we assume that a side AB has a strut and |AB| ≥ 1, then we get
L(P ) ≥ 3 obviously.
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It is interesting that a similar idea works in the case of two adjacent to each
other sides of P , but the corresponding result is much more difficult to obtain.
The second main result of [18] is as follows.

Theorem ([18])

Given a natural number n ≥ 3, let P be a convex polygon with the consecutive
vertices A1, A2, A3, . . . , An−1, An such that the sides A1A2 and A2A3 have
struts and |A1A2| + |A2A3| ≥ 1. Then the perimeter L(P ) of P satisfies the
inequality L(P ) ≥ 3.
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The proof of this theorem is based on the using of polynomial ideals, the ability
to eliminate some variables and to find the corresponding Gröbner bases, see,
e. g., [4]. It is reasonable to perform all necessary calculations using some
standard system of symbolic calculations.

It should be noted that a regular triangle with unit side is not a unique polygon
with L(P ) = 3 in the above theorem. There are a continuous family of
quadrangle with this property and one distinguished pentagon, see Fig. 15.
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e. g., [4]. It is reasonable to perform all necessary calculations using some
standard system of symbolic calculations.

It should be noted that a regular triangle with unit side is not a unique polygon
with L(P ) = 3 in the above theorem. There are a continuous family of
quadrangle with this property and one distinguished pentagon, see Fig. 15.

Yurii Nikonorov Some extremal problems on the plane



Lecture 1. One problem by Tiberiu Popoviciu
Lecture 2. The self Chebyshev radius of the boundary . . .
Lecture 3. Rolf Walter’s conjecture on “magic kites”. . .
Lecture 4. The self-perimeter of the unit ball of the Minkowski . . .

Fig. 15: A special pentagon P with perimeter 3.
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This pentagon is quite remarkable. Note that
∠CEB = ∠CFB = ∠CAB = ∠AFB = ∠AEB = ∠ACB = ∠ECF =
∠EBF = ∠EAF = 2arcsin(1/4) = arccos(7/8). In particular, all vertices of
this pentagon lie on the same circle. Moreover, |AC| = 7/8. Thus, if we
increase this pentagon by 8 times, we get an integer pentagon, in which all
sides and diagonals have integer lengths. This pentagon was found at first in
[15], see also the discussion in [21, P. 19].

The above theorems and examples of polygons with the perimeters close to 3
naturally entail the following

Conjecture ([18])

Given natural numbers n ≥ 3 and m = 1, . . . , n − 1, let P be a convex polygon
P with the consecutive vertices A1, A2, A3, . . . , An−1, An such that the sides
A1A2, A2A3, . . . , AmAm+1 have struts and
|A1A2| + |A2A3| + · · · + |AmAm+1| ≥ 1. Then the perimeter L(P ) of P
satisfies the inequality L(P ) ≥ 3.
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The self-perimeter of the unit ball of the Minkowski plane and László Fejes
Tóth’s conjecture

The first topic is related to the self-perimeter of the unit ball of the Minkowski
plane.
We discuss well known results by S. Golab (S. Go ląb) [8],15 Yu.G. Reshetnyak
[23],16 D. Laugwitz [11],17 and J.J. Schäffer [24]18 in this direction, see also
[27].

Let A2 be an affine plane and B a convex figure on A2 (i. e. a compact convex
subset of A2 with non-trivial interior) containing a point O in its interior (not
necessarily symmetric about O). Without loss of generality, we may identify A2

with R
2 and assume that O is the origin in R

2. Let us suppose also that R
2 is

supplied with a scalar product with the corresponding norm | · |.

15S. Golab, Quelques problèmes métriques de la géométrie de Minkowski, Trav. Acad. Mines
Cracovie Fasc. 6 (1932) 1–79 (in Polish).

16Yu.G. Reshetnyak, An extremum problem from the theory of convex curves, Uspekhi Mat.
Nauk [Russian Math. Surveys] 8(6) (1953), 125–126 (in Russian).

17D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Räume, Math. Z. 61 (1954),
235–244 (in German).

18J.J. Schäffer, Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967),
59–79, addendum ibid. 173 (1967), 79–82.
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For distinct points x, y ∈ R
2, we define the distance dB(x, y) from x to y as

follows. Let us consider a ray from O in the direction of the vector y − x and
let z be the point of its intersection with the boundary of B. Now, we put

dB(x, y) = |y − x|/|z|.

Thus, dB is a (possibly, nonsymmetric) metric. Obviously, the distance
dB(x, y) does not depend on the choice of a scalar product on R

2.
An affine plane A2 with the metric dB (possibly, nonsymmetric) introduced
above is called a Minkowski plane M2, whereas the figure B is called the
norming figure or the unit disk of M2. If O is the center of B, then we have a
classical Minkowski plane M2 with the symmetric norm ‖x‖B = dB(O, x).
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Let P be a convex bounded polygon on M2. Denote by L+

B(P ) and by L−

B(P )
its perimeters traversed counterclockwise and clockwise, respectively. For a
compact convex figure K, we define the perimeters by the formula

U±

B (K) = sup L±

B(P ),

where the supremum is taken over all convex polygons P within K. It is not
so difficult to check that the perimeters U± have the monotonicity property: If
K1 ⊂ K2, then U±

B (K1) ≤ U±

B (K2), and the equality holds if and only if
K1 = K2.

If O is not the center of B, then there is a convex figure K such that
U+(K) 6= U−(K). If we consider B′ := {(x, y) ∈ R

2 | (−x, y) ∈ B}, then
U+

B′(K) = U−

B (K) and U−

B′(K) = U+

B (K) for any convex figure K. On the
Minkowski plane with a norming figure B symmetric about O, both perimeters
have a common value U(K) for any convex figure K.
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It is reasonable and interesting to consider and study the perimeters U±

B for the
unit disk B. In this case we deal with the self-perimeters U±

B (B) for B. If O is
the center of B, then we have (in fact) only one self-perimeter
UB(B) = U+

B (B) = U−

B (B).

We have the following classical result.

Theorem (Golab – Reshetnyak – Laugwitz – Schäffer)

For any Minkowski plane with a centrally symmetric unit disk B, the
self-perimeter UB(B) of B satisfy the inequality 6 ≤ UB(B) ≤ 8. Moreover,
UB(B) = 6 if and only if B is an affinely regular hexagon and UB(B) = 8 if
and only if B is a parallelogram.
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A little about the history of this theorem. S. Golab proved in 1932 that the
self-perimeter U(B) satisfies 6 ≤ UB(B) ≤ 8. Yu.G. Reshetnyak [23] in 1953
and D. Laugwitz [11] in 1954 rediscovered Golab’s result. In 1967, J.J. Schäffer
[24] proved that U(B) = 6 only for an affinely regular hexagon, and U(B) = 8
only for a parallelogram.

For any Euclidean norm, the self-perimeter is 2π = 6,283185... obviously. Let
us consider some hints on how to prove the inequality 6 ≤ UB(B) ≤ 8.
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Fig. 16: The key idea of the proof of the inequality UB(B) ≥ 6.

A hint for proving the inequality UB(B) ≥ 6. One can consider an affinely
regular hexagon HP inscribed in B, that is, an affine image of a regular
hexagon with vertices on the boundaries of B. It is easy to construct such a
hexagon. It is clear that O is its center and the perimeter UB(HP ) of this
hexagon is equal to 6 (each side of HP has the unit length). By the
monotonicity property of the perimeters, we obtain UB(B) ≥ UB(HP ) = 6.
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Fig. 17: The key idea of the proof of the inequality UB(B) ≤ 8.
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A hint for proving the inequality UB(B) ≤ 8. One can consider an
parallelogram IP inscribed in B (all vertices of IP are on the boundaries of B)
with maximal area among all such parallelograms. It is clear that the straight
lines through each vertex of IP parallel to the diagonal of IP , which is not
incident to a given vertex, is a support line for B. Four such straight lines
generate a parallelogram OP which perimeter UB(OP ) is 8 (each side of OP
has length 2). By the monotonicity property of the perimeters, we obtain
UB(B) ≤ UB(OP ) = 8.

It should be noted that the original proofs of the
Golab – Reshetnyak – Laugwitz and Schäffer results were essentially based on
the symmetry of B with respect to the origin O.
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Let us consider the case of not necessarily symmetric norming figure B (the
point O is in the interior of B). We have the following result.

Theorem (Shcherba)

For any Minkowski plane, the self-perimeters U±

B (B) of the unit disk B satisfy
the inequality U±

B (B) ≥ 6. Moreover, U−(B) = 6 (or U+(B) = 6) if and only
if B is an affinely regular hexagon. In particular, U+

B (B) = 6 is equivalent to
U−

B (B) = 6.

A.I. Shcherba proved the inequality U±(B) ≥ 6 in 2003 [25]19 (the
corresponding problem was stated by Golab in 1932 [8]). Moreover, in 2007,
A.I. Shcherba proved that the equality U−(B) = 6 or U+(B) = 6 holds if and
only if B is an affinely regular hexagon, see [26]20.

19A.I. Shcherba, On an estimation of the perimeter of the unit circle on the Minkowski
plane, Tr. Rubtsovskogo Industrial. Inst., 12 (2003), 96–107 (in Russian).

20A.I. Shcherba, Unit disk of smallest self-perimeter in the Minkowski plane, Mat. Zametki
81(1) (2007), 125–135 (in Russian).
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Some simplest examples show that there is no absolute constant bounding the
self-perimeters U±(B) from above in the Minkowski plane M2.

Example

Let us consider the norming figure B that is the quadrangle KLMN on R
2,

where K = (r, 1), L = (r,−1), M = (−1,−1), and N = (−1, 1) for some
r > 0. It is easy to check that

U±

B (B) = 6 + r + 1/r

and
U±

B (B) → +∞ as r → +∞.

On the other hand we have the following result.
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Theorem (Grünbaum – Makeev)

For any convex figure B, one can choose a point O in the interior of B so that
the self-perimeters satisfy the inequality U±

B (B) ≤ 9. Moreover, this estimate
cannot be improved for a triangle.

This theorem was obtained by B. Grünbaum in 1964 [9].21 In 2003, V.V.
Makeev rediscovered this result [12].22

21B. Grünbaum, Self-circumference of convex sets, Colloq. Math. 13 (1964), 55–57.
22V.V. Makeev, On the upper bound of the perimeter of a nonsymmetric unit disk on the

Minkowski plane, Zap. Nauch. Semin. POMI 299 (2003), 262–266 (in Russian).
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Fig. 18: The longest chords of a polygon parallel to its sides.

Now, we consider one conjecture by László Fejes Tóth.
Let P be a plane convex n-gon with side lengths a1, . . . , an. Let bi be the
length of the longest chord of P parallel to the i-th side.
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It was conjectured by L. Fejes Tóth in [7]23 that

3 ≤
n

X

i=1

ai/bi ≤ 4,

whereas
Pn

i=1
ai/bi = 3 if and only if P is a snub triangle obtained by cutting

off three congruent triangles from the corners of a triangle, while
Pn

i=1
ai/bi = 4 if and only if P is a parallelogram. This conjecture was

partially proven in [7].

A complete solution to this problem was obtained by Yu.G. Nikonorov and
N.V. Rasskazova in [20].24 To show the main idea of this solution we need to
introduce some definitions.

23L. Fejes Tóth, Über eine affininvariante Maßzahl bei Eipolyedern, Stud. Sci. Math. Hung.
5 (1970) 173–180 (in German).

24Yu.G. Nikonorov, N.V. Rasskazova, On a problem of L. Fejes Tóth, Mat. Tr. 5(1) (2002),
102–113 (in Russian).
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Let us recall the notion of “the central symmetral” for polygons. For a convex
polygon P in R

2, the central symmetral of P , defined by

♦(P ) =
1

2
P +

1

2
(−P ),

see e. g. [3]. Recall that the central symmetral have many important
properties. For instance, it is easy to check that the perimeters of the polygons
P and ♦(P ) coincide.
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Now, we are ready to explain the main idea of solving the above problem by L.
Fejes Tóth. It should be noted that the central symmetral was an important
element of this solution.

In fact, it was observed in [20], that the inequality 3 ≤ Pn

i=1
ai/bi ≤ 4 follows

from the Golab – Reshetnyak – Laugwitz result considered for the central
symmetral ♦(P ) = 1

2
P + 1

2
(−P ) of P . The corresponding Schäffer result gives

all polygons with
Pn

i=1
ai/bi = 3 and

Pn

i=1
ai/bi = 4. It should be noted also

that [20] contains self-contained and modified proofs of the
Golab – Reshetnyak – Laugwitz and Schäffer results.
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